European Genome-Phenome Archive

File Quality

File InformationEGAF00004835500

File Data

Base Coverage Distribution

This chart represents the base coverage distribution along the reference file. Y-axis represents the number of times a position in the reference file is covered. The x-axis represents the range of the values for the coverage.

Data is represented in a log scale to minimise the variability. A high peak in the beginning (low coverage) and a curve descending is expected.

2 653 506777 731495 440390 526343 233310 550290 184285 774288 443289 487320 921322 181351 686354 624357 087360 196356 528350 742310 617283 135258 674224 768186 794151 477120 82185 67368 28552 14338 71927 27220 02513 3048 7115 6094 6682 8402 4721 8751 1681 2881 0266058166051 08466355234557860961743842347038841839429135231359741528917634426130116221615612721625325819920612891167771691399011093611121287230120143725515013280701229918913710713312490705389366428333559903575291071875884764539281234507749481731301670706495306831232262566837923737481771830332151483223111332252945661911503823331481221436162262945516283143125421318718202019279124727417163186342315182915171627261830271016112027181214757121774165624103372237541381245812523144664301610411110492010619687512551451524455158122421911212311412524121435515101164764131211294112129111132425227172117451112211545521131111113626271311233412112222131111111211111152114111362517221161143211121111113411611111151113351111121132121212111125111116232121131211141231211111111111214111302100200300400500600700800900>1000Coverage value1101001k10k100k1M# Bases

Base Quality

The base quality distribution shows the Phred quality scores describing the probability that a nucleotide has been incorrectly assigned; e.g. an error in the sequencing. Specifically, Q=-log10(P), where Q is the Phred score and P is the probability the nucleotide is wrong. The larger the score, the more confident we are in the base call. Depending on the sequencing technology, we can expect to see different distributions, but we expect to see a distribution skewed towards larger (more confident) scores; typically around 40.

00655 158000000000007 094 8180000001 783 98500000718 059000015 986 681000105 032 227000000510152025303540Phred quality score0M10M20M30M40M50M60M70M80M90M100M# Bases

Mapped Reads

Number of reads successfully mapped (singletons & both mates) to the reference genome in the sample. Genetic variation, in particular structural variants, ensure that every sequenced sample is genetically different from the reference genome it was aligned to. Small differences against the reference are accepted, but, for more significant variation, the read can fail to be placed. Therefore, it is not expected that the mapped reads rate will hit 100%, but it is supposed to be high (usually >90%). Calculations are made taking into account the proportion of mapped reads against the total number of reads (mapped/mapped+unmapped).

80.6 %1 408 36780.6 %19.4 %

Both Mates Mapped

When working with paired-end sequencing, each DNA fragment is sequenced from both ends, creating two mates for each pair. This chart shows the fraction of reads in pairs where both of the mates successfully map to the reference genome. .

Notice that reads not mapped to the expected distance are also included as occurs with the proper pairs chart.

0 %00 %100 %

Singletons

When working with paired-end sequencing, each DNA fragment is sequenced from both ends, creating two mates for each pair. If one mate in the pair successfully maps to the reference genome, but the other is unmapped, the mapped mate is a singleton. One way in which a singleton could occur would be if the sample has a large insertion compared with the reference genome; one mate can fall in sequence flanking the insertion and will be mapped, but the other falls in the inserted sequence and so cannot map to the reference genome. There are unlikely to many such structural variants in the sample, or sequencing errors that would cause a read not to be able to map. Consequently, the singleton rate is expected to be very low (<1%).

100 %1 408 367100 %0 %

Forward Strand

Fraction of reads mapped to the forward DNA strand. The general expectation is that the DNA library preparation step will generate DNA from the forward and reverse strands in equal amounts so after mapping the reads to the reference genome, approximately 50% of them will consequently map to the forward strand. Deviations from the 50%, may be due to problems with the library preparation step.

100 %1 748 325100 %0 %

Proper Pairs

A fragment consisting of two mates is called a proper pair if both mates map to the reference genome at the expected distance according to the reference genome. In particular, if the DNA library consists of fragments ~500 base pairs in length, and 100 base pair reads are sequenced from either end, the expectation would be that the two reads map to the reference genome separated by ~300 base pairs. If the sequenced sample contains large structural variants, e.g. a large insertion, where we expect the reads mapping with a large separation would be a signal for this variant, and the reads would not be considered as proper pairs. Based on the sequencing technology, there is also an expectation of the orientation of each read in the fragment.

The rate of proper pairs is expected to be well over 90%; even if the mapping rate itself is low as a result of bacterial contamination, for example.

0 %00 %100 %

Duplicates

PCR duplicates are two (or more) reads that originate from the same DNA fragment. When sequencing data is analyzed, it is assumed that each observation (i.e. each read) is independent; an assumption that fails in the presence of duplicate reads. Typically, algorithms look for reads that map to the same genomic coordinate, and whose mates also map to identical genomic coordinates. It is important to note that as the sequencing depth increases, more reads are sampled from the DNA library, and consequently it is increasingly likely that duplicate reads will be sampled. As a result, the true duplicate rate is not independent of the depth, and they should both be considered when looking at the duplicate rate. Additionally, as the sequencing depth in increases, it is also increasingly likely that reads will map to the same location and be marked as duplicates, even when they are not. As such, as the sequencing depth approaches and surpasses the read length, the duplicate rate starts to become less indicative of problems.

72 %1 258 94372 %28 %

Mapping Quality Distribution

The mapping quality distribution shows the Phred quality scores describing the probability that a read does not map to the location that it has been assigned to (specifically, Q=-log10(P), where Q is the Phred score and P is the probability the read is in the wrong location). So the larger the score, the higher the quality of the mapping. Some scores have a specific meaning, e.g. a score of 0 means that the read could map equally to multiple places in the reference genome. The majority of reads should be well mapped, and so we expect to see this distribution heavily skewed to a significant value (typically around 60). It is not unusual to see some scores around zero. Reads originating from repetitive elements in the genome will plausibly map to multiple locations.

462 0643 0982 6033 3153 3532 9585 1125 1074 5106 3113 8229 8335 2171 4822 4591 2491 2622 4636737448741 0071 5914 0089201 6294 2852 5891 91813 5871 5371 1903 7101 6959884 5621 6841 2004 5501 7202 6783 5631 3535 6565 0057402 9782 9798544 7011 7216545 0841 0371 2015 1861 3491 0197 6189481 112 418051015202530354045505560Phred quality score0.1M0.2M0.3M0.4M0.5M0.6M0.7M0.8M0.9M1M1.1M# Reads

Mapped vs Unmapped

Stacked column chart for both mapped and unmapped reads along all chromosomes in the reference file. It is a similar representation as shown in the Mapped reads chart but for each chromosome. Although sequenced sample may be a female, it is possible to get reads in the Y chromosome as there are common regions in both chromosomes called pseudoautosomal regions (PAR1, PAR2).

Unmapped reads belonging to each chromosome are determined when the one mate/pair is aligned and the other is not. The unmapped read should have chromosome and POS identical to its mate. It could also be due when aligning is performed with bwa as it concatenates all the reference sequences together, so if a read hangs off of one reference onto another, it will be given the right chromosome and position, but it also be classified as unmapped.

100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%100%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%123456789101112131415161718192021XYM0%10%20%30%40%50%60%70%80%90%100%mappedunmapped